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TECHNICAL NOIE D-271

ANALYSIS OF ELASTIC-PLASTIC STRESS DISTRIBUTION IN THIN-
WALLED CYLINDERS AND SPHERES SUBJECTED TO INTERNAL
PRESSURE AND NUCLEAR RADIATION HEATING

By Donald F. Johnson

SUMMARY

The steady-state elastlic~plastic stress distributions in ecylindrical
and spherical vessels subjected to internal pressure, symmetrical nuclear
heating, and inside-wall cooling were calculated. A finite-difference
method combined with a technique of successive approximations was used.
The material properties used were those of Inconel X, but the method
used is applicable to any material. TFor given values of pressuré load
(pressure times radius) and heat flux, there is a minimum possible
strain for each vessel configuration that occurs at a particular wall
thickness for each configuration. Furthermore, for a given value of
pressure load, the minimum strain for different heat fluxes occurs at
essentially the same wall thickness. The optimum thicknesses and cor-
responding strains for the sphere were approximately half those for the
cylinder for the same loads.

INTRODUCTION

A nuclear-rocket component that presents unique design problems is
the pressure shell surrounding the reactor core. Not only is heat gen-
erated within the shell by gamma and neutron radiation, but also the
inside surface of the shell is heated by thermal radiation from the
neutron shield or reflector. Since weight saving is extremely important
in any rocket vehilcle, 1t is desirable to reduce the thickness of the
shield as much as possible. When this is done the pressure shell is
subjected to higher nuclear heat flux. Cooling of the shell will there~
fore be a necessity. The simplest arrangement is to cool the inside
surface with the propellant before it passes through the reactor.

With any cooling method, thermal stresses will be developed becsause
of nonuniform temperatures within the shell. In general, these stresses
will increase as the temperature gradient increases; and the gradient



varies with the thickness of the shell and the gamma-neutron heat flux.
In addition to increasing stress, the increase in average temperature
level causes a lowering of the mechanical-strength properties of the
shell material. The design procedure for a reactor pressure shell with
high heat flux from nuclear radiation is therefore unique in that the
safety factor cannot always be increased by making the shell thicker,
since the thicker shell might result in added heat generation and a re-
duction in strength. The design procedure should therefore incorporate
a method of finding whether an optimum shell thickness exists.

There 1s little information in the literature on reactor pressure-~
shell design. Reference 1 discusses the possibility of a pressure-shell
failure due to sudden excursions in the reactor. The conclusion is
drawn that the containment potential of a reactor pressure shell is sub-
stantially improved by the strain-energy absorption obtained by large
plastic deformation. It seems probable that plastic flow will have to
be considered in any reactor pressure-shell design where there is a high
heat flux from nuclear radiation.

The complete design for a reactor pressure shell for a nuclear
rocket would include design of the exhaust nozzle as well as the re-
mainder of the pressure shell, which could consist of a sphere or a
cylindrical portion with a hemispherical end. As a filrst approach to
such a design study, this report presents an analytical method including
plastic flow for designing a spherical shell and a cylindrical shell with
a hemispherical end. The nozzle is not considered. The analysis con-
gsiders cooling on the inside surface of the pressure-vessel wall only.
The method used is based on the finite-difference approach of references
2 and 3 and the successive-approximation technique of reference 4. The
analysis was made using Inconel X as the vessel material. A range of
heat fluxes up to 950 watts per cubic centimeter and a range of pressure
loads (product of pressure times radius) from 18,000 to 42,000 pounds
per inch were considered.

SYMBOLS
Aj conductivity constants, Btu/(hr)(sq ft)(OFz/ft)
a inside radius (station 1), in.
B conductivity constants, Btu/(hr)(sq ft)(oF/ft)
b outside radius (station 20), in.
C15Co strain constants
B elastic modulus, psi

hn rn - Yrn-1» in.
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k conductivity, Btu/(hr)(sq £t)(°F/ft)
1 length of cylinder, in.

P internal pressure, psi

Q heat flow, watts

Q/v nuclear-radiation heat flux, w/cc

r radial distance, in.

T temperature above arbitrary zero, Op
t thickness, in.

u radial displacement, in.

a coefficient of thermal expansion, in./(in.)(°F)
8 conversion factor, 2.54° cm3/in.3

Y conversion factor, 0.0244 <W?Ezigf§i§?rl
€ total strain, in./in.

v Poisson's ratio

o stress, psi

Subscripts:

a inside radius

c cylinder

e equivalent

ep equivalent plastic

et equivalent total

i inside surface

J i, 2

n nth point

outside surface



P Pplastic

T radial

s sphere

Z longitudinal
[} tangential

ANALYTTCAL PROCEDURE
Analysis of Cylinder

An analysis was made on a long circular cylinder subject to the
following assumptions:

(l) The cylinder material is linearly elastic up to the elastic
limit; beyond this point, plastic flow occurs.

(2) Axial symmetry exists.

(3) Generalized plane strain exists in that the axial strain €,
does not vary in the radial direction.

(4) The inside wall is cooled to 100° F.

(5) Steady-state conditions are present as far as the heat flow is
concerned.

(6) Calculations are made at a sufficient distance from the ends
so that end conditions are negligible.

(7) The cylinder is subjected to an internal pressure and is with-
out axial restraint.

(8) The coefficient of thermal expansion, the conductivity, and the
modulus of elasticity vary in a known manner with temperature.

(9) Poisson's ratio is a constant (u = 0.3).
(10) The deformation theory of plasticity with the von Mises yield
condition is used.
Determination of Stress and Strain Distribution

The determination of stresses and strains in a long cylinder follows
the usual treatment for plane straln problems. The equllibrium equation
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is given by

do g.-0
r r 8 _
ar T r =0 (1)

The compatibility equation is

de €n ~ €
8 2] r
a * T =0 (2)

and the stress-strain relations are

1

e = 5[or - 1oy +0,)] + o + er,p )
1

€g = EE’Q - (o, + UZ)] +al + €5 p > (3)
1

€, = E[Uz - p,(oe + Or)] + ol + €5 p

Writing equation (2) in terms of stresses by the use of equations (3)

gives

dfl, _Bo -4 _l+p fp ” %e,p
Tlg % -5 % - L0y +ar+ ee,p> = 5 (o, - og) + = (4)

Also, solving the last of equations (3) for 0, and substituting into
equation (4) give

2

afi

E?[E gy - % Op - pe, - }E— (0p + 05) + ual + ey p + of + ee,p]
14p ‘r,p ~ €g,p

= TEr (or - og) + T (5)

For the generalized plane strain problem, ¢, is a constant and is
determined from the axial loading on the cylinder as follows:

b 2

f Ozr dr = —8422 (6)

a



or

I

o}
2 -
Eey + puloy. + 04) - BaT - Ee rdr = &P
[[Z IJ'(I‘ 9) Z,:p] >

Therefore,

2 fo)
a~p
5 —'[ E(Gr + 09) - Eal - Eez’ar dr
€ =
z {bErd_r

Substituting equation (7) in equation (5) gives a pair of simultaneous
differential equations, (1) and (5), that can be solved for o, and oo

(7)

T9S-H

In the elastic case (Gr,p: €g,p> and €z,p all zero), these equations

are linear and can be solved by a variety of ways - for example, the
finite-difference method of reference 2. For the case of plastic flow,
however, the plastic-flow terms are nonlinear functions of the dependent
variables (the stresses), and the solution becomes more difficult.

In the present paper, equations (1) and (5) were solved by con-
verting them to finite-difference form, as was done in references 2 and
3 and described in detail in appendix A, and then solving these finite- -
difference equations by the method of successive approximations as given
in reference 4. Briefly, this method consists of first assuming some
plastic-strain distribution (such as zero everywhere). Since the plastic-
flow terms in equations (1) and (5) are now known quantities, these equa-
tions can be solved by the finite-difference method. This gives a first
approximation to the stress and strain distribution. From this first
approximation a better approximation is computed for the plastic strains
by means of the stress-strain relations in the plastic range subsequently
discussed. These new values of the plastic strains are put into equa-
tions (1) and (5), and these equations are solved again by the finite-
difference method. This process is then repeated continuously until
convergence is obtained; that is, the difference between the distribu-
tions computed for two successive iterations is as small as desired.

In order to determine the new values of the plastic strains at any
point of the preceding calculation, a stress-strain relation for tri-
axial stresses is needed. It was assumed 1n making these calculations
that the deformation theory of plasticity and the von Mises yield cri-
terion are valid. On this basis it is shown in appendix B that the
plastic strains can be computed from the total strains by means of the
following equations:
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€r,p = Seer (2ep - €5 - €,)

€ep
€g,p = Tecr (269 - &p - €,) > (8)

z,p = “°r,p " €g,p

J

ot = 33@ ‘/(er - (—:e)2 +(ep - €,)% + (e, - ee)z (9)

where

and €gp 1s related to et through the stress-strain curve of the
material by the following relation:

Cet = 7 = (L +u) + e (10)
3 B .Y

where the equivalent stress o, and the equivalent plastic strain €ep

are shown on the typical stress-strain curve (fig. 1), which was ob-
tained from unpublished NASA data. Using relation (10) together with
the stress-strain curve for the material, it is possible to plot €e
. . . . . D
against €gy as shown in figure 2. This figure can now be used to-

gether with equations (8) to calculate the values of the plastic strains.
The method of calculation can now be summarized as follows:

(1) Assume values for the plastic strains such as € =€ =0

r,p 9,
everywhere,

(2) Solve equations (1) and (5) by the finite-difference method
described in appendix A.

(3) Calculate the total strains by means of equations (3).

(4) Calculate the equivalent total strain ¢gt from equation (9).
(5) Read egp from figure 2.

(6) Calculate €y, ps eé,p, and ¢,  from equations (8).

(7) Using these values in equations (1) and (5), go back to step (2).

(8) Continue until convergence is obtained.



Determination of Temperature Distribution
Before equations (1) and (5) can be solved, it is necessary to

know the temperature distribution. The heat generated within the wall
due to neutron and gamma radiation heating is
Q = nlp % (r2 - r2) (11)

This same amount of heat is transferred by conduction towards the inner
wall:

Q = 2nrivk —% (12)
Therefore,

k 4T =

- ™
<[
—

=
o™

[

]

™

T dr (13)
where the conversion factors B and Yy have the values

3
2.54 cm
B = ( in. )

(watt)(£t)(hr)
0.0244 THta) (in.)

H

T

From figure 3 it can be seen that the variation of k with temperature
can be approximated by two straight lines. Therefore, k = AT + By for

the part of the curve from A to B, and k = AoT + B, from B toc C.
Integrating from r; to r and using appropriate values of A and B

for the portion of the curve integrated over, the left side of equation
(13) becomes

L

and the right side of equation (13) becomes

18Q To (v - r?) Balz. % 1,2 =27._
YV — & =gy |y - F (ro - )] = felr)

r

To Ay 2 2
(AT + B3)AT = —5-(To - T°) + B4(T, - T)

Combining the two sides of the equation and simplifying give

2B, 2B 1 2f.(r)
2 g —dp gl _J ML,
Te + K T - Tg i To + Y (14)

1G
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Using the condition that when r = rj, T = T;, equation (14) can be
solved for Tt
B.\¢ .
TO=_§;i\/<Ti+_) » Polrs)
A A. A
J J J

The temperature at any radius r, T, 1s obtained by solving (14) for T:

: :\2 2f (r
7= - By (TO+B_J)—____X()
J Aj 3

In order for the temperature to be positive, the plus sign is used with
the radical.

?1 jor
s

Analysis of Sphere

Because of the symmetry of a sphere, the complete stress state is
defined where the radial and tangential stresses are known at any radius.
The assumptions enumerated for the cylinder also apply to the sphere,
with the exception of those that apply to the cylinder only by virtue of
its geometry. The procedure is the same as for the cylinder with slight
‘modifications. The equilibrium and compatibility relations are differ-
ent, and all of the equations are simplified because of the spherical
symmetry, which reduces the number of stresses and strains from three to
two. The complete analysis is given in appendix C, and the analysis of
the temperature distribution is given in appendix D.

COMPUTATION

The curve of €ep against €gf 1in figure 2 can be approximated by

two straight lines, one from A to B and the other from B to C. In the
analysis, therefore, the following relation was used:

¢

€ep = Cl + Cz€et

where C; and Cs changed for each portion of the curve. It was nec-
essary to use different curves for different temperatures. Because of
the scatter in the experimental data and the error involved in drawing
the best curve through the points, the linear assumption was considered
Justified and within the overall error of the input data. For ease of
programming, a linear interpolation was used for the wvalue of C1 and
C; between T = 180° and 910° F. Above 910° F, which was the maximum
temperature for which stress-strain data were available, a linear ex-
trapolation was used. For a material for which the slope of the plastic
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portion of the stress-strain curve was not fairly constant, other re-
lations would have to be used. For convenience of computation, the
curves of coefficient of expansion and conductivity against temperature
were approximated by two straight lines each, as shown in figure 3. The
curve of elastic modulus against temperature was approximated by a quad-
ratic equation (fig. 3).

An IBM 653 electronic computer was used to make the calculations.
It was determined that, when two successive values of €, at the inside

surface differed by less than 1 in the sixth place, the convergence was ﬁ
sufficient, since, at the most, three significant figures are used in §
the graphical plots. With further iterations €, changed no further. F
The changes in the stress were always at least an order of magnitude
less than the changes in strain. Therefore, the sixth-place convergence
criterion was also sufficient for the stresses.

RESULTS AND DISCUSSION

Optimum Thickness
The variables pertinent to the calculation of optimum thickness .

were radius, thickness, heat flux, and pressure. Figure 4 shows the
equivalent total strain at the inside wall as a function of thickness
for different values of heat flux and pressure load (pressure times
radius). It is obvious that there is an optimum thickness with respect
to minimum strain. This optimum arises from the fact that decreasing
the thickness causes an increase in the stress due to pressure, while
increasing the thickness causes an increase in the temperature gradient
and hence an increase in thermal strain. The minimum strain is relatively
independent of thickness except as the heat flux becomes low. At low
values of heat flux the thickness may be increased to lower the strain
level. Since the thermal gradients will be low, the problem is reduced
to a standard pressure-vessel calculation. However, when it is realized
that weight is at a premium and therefore a minimum thickness is a ne-
cessity, it can be seen that the optimum thickness is essentially the
same for all values of heat flux.

Excursions in Heat Flux

Figure 4 is alsc a graphical illustration of the effect of excursions
in heat flux. It can be seen that a large range of heat fluxes can be
tolerated at low values of pressure load. That is, the equivalent total
strain increases at about 1/4 the rate of the heat flux. At the larger
pressure load of 42,000 pounds per inch, the ratio drops to about 1, al- »
though the strain stlll increases at a slightly lower rate than the heat
flux.
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Pressure BExcursions

Pressure excursions are also possible in a nuclear reactor. Fig-
ure 5 shows results of excursions of £10 percent. It can be seen that
the equivalent total strain for optimum thickness rises 25 percent for
the cylinder and 40 percent for the sphere when the pressure rises from
1000 to 1100 pounds per sguare inch. It is apparent that a change of
thickness and/or pressure of up to 10 percent does not cause increases
in equivalent total strain great enough to lead to failure within the
range of parameters investigated. Therefore, if pressure excursions are
expected, one should design for overpressure.

Distributions of Stress and Strain

For a given material the main parameters affecting the severity of
the temperature gradient were heat flux, thickness, and, to a lesser
extent, radius. Two typical temperature distributions through the cyl-
inder wall are shown in figure 6(a). The data for the two curves are
for the two extreme conditions (with regard to straln) of pressure load
and heat flux from figure 4(a). It can be seen in figures 6(b) and (c)
that the maximum values of stress and strain are at the inside wall.
This is due to the fact that the thermal strsin is compressive at the
outside surface and tensile at the inside surface, whereas the strain
due to pressure is tensile throughout the thickness. Thus, the thermal
and. pressure strains tend to cancel at the outside surface and add at the
inside surface. It can also be seen that the tangential stress is the
largest of the stresses. For simplicity, only the equilvalent total
strain and the tangential stress at the inside wall are discussed. The
radial stress ¢y Wwas not plotted, since its maximum value, which is
equal to the pressure, is less than 2 percent of the other two stresses.

Design Curves

Figure 7 is a series of curves summarizing the quantitative results
of this investigation. The equivalent total strain at the inside wall
is plotted as a function of the heat flux. Each curve is for a given
pressure load. The existence of a single curve for each value of pres-
sure load was verified by varying the pressure and radius but keeping
the product constant. Several points are plotted showing this verifi-
cation. The two intermediate curves in figure 7(a) at pressure loads
of 326,000 and 24,000 pounds per inch were obtained by cross-plotting.
One calculated data point on each curve indicates that the technique was
sufficiently accurate. The thicknesses used were the optimum thicknesses
for the particular pressure load. Figure 7 also shows that, for smaller
values of pressure load, larger heat fluxes can be tolerated with con-
sequent equal or smaller equivalent total strains.
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If the value of pressure load for each curve is divided by the cor-
responding optimum thickness, the average hoop stress is obtained. This
average hoop stress varies in the cylinder from about 100,000 psi at a
pressure load of 18,000 pounds per inch to 110,500 psi at a pressure load
of 42,000 pounds per Inch. The tangential stress in the sphere is equal
to pr/2t. This varies from 90,000 to about 96,000 psi for pressure loads
from 18,000 to 42,000 pounds per inch. This allows the designer to cal-
culate a rough value of t for a given hoop stress. However, to get
the corresponding strains, it would be necessary to go through the com-
plete analysis. There is only about a t5-percent variation in average
stress, while the average strains vary from below the elastic 1limit to
about 2.6 percent, depending on the heat flux. This 1s logical when one
observes the shape of the stress-strain curve in figure 1. It can be
seen that in the plastic region large changes in strain result in rela-
tively small changes in stress.

The curves in figure 7 actually constitute a set of design curves.
The designer can quickly determine an optimum thickness from the curves
for his particular pressure load and allowable equivalent total strain.

The maximum heat flux that can be tolerated can be read from the gbscissa.

These curves were obtained for a particular method of cooling. If the
designer finds himself limited to either too small a strain or too small
a heat flux, or both, it is apparent that a better cooling method, such
as internal-wall cooling, would have to be employed and incorporated in
the analysis.

Spherical Tank

A spherical tank could be used if the length-diameter ratio of the
core were equal or close to unity. However, the diameter of a spherical
tank would have to be equal to -/2 times the diameter of a cylindrical
tank. The results of comparing the equivalent total strains of a cyl-
inder and an equivalent sphere found by multiplying the pressure load in
the cylinder by 1/5 are shown in table I. It can be seen that the
strains in the sphere are only about 70 to 80 percent of those in the
cylinder,

Material Properties

The choice of the material for a nuclear-reactor pressure shell
depends on several factors. Of primary importance is high tensille
strength at high temperatures. Coupled with this, a reasonable amount
of ductility is necessary. Data at temperatures up to about 1400° F
were available for Inconel X. Its tensile strength up to 1350° F was
better than that of the available high-temperature steels, and much more
complete stress-strain data at high temperatures were available. There-
fore, Inconel X was chosen for the purposes of this investigation. How-
ever, other materials such as aluminum or titanium might be applicable.

T¥9S-d
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In order to obtain the stress and strain distributions for a
material other than Inconel X, it would be necessary to run a complete
analysis using the mechanical and physical constants for that material.
This was beyond the scope of this report. However, an attempt was made
to determine the effect of varying some of the material properties while
holding the others constant at the values for Inconel X. Table II gives
the equivalent total strain and the tangential stress at the inside wall
for the two extreme strain cases that have been used previously for com-
parisons. Also given in the table are values obtained at conductivities
varying from 10 Btu/(hr)(sq £t)(°F/ft) at 0° F to about 16.5 at 1200° F,
and from 6.8 at 0° F to 14.2 at 1200° F. Coefficients of expansion vary-
ing from 9.1 inch per inch per °F at 0° F to 10 at 1400° F and from 5.2
at 0° F to 6.8 at 1400° F were considered. These values encompass the
range that might be encountered with several high-temperature alloys. It
can be seen that a considerable variation of o« and k makes a rather
small difference in the stress and strain values.

Hemispherical End on Cylindrical Tank

For a hemispherical end on a cylindrical tank, calculations were
made using the analysis of the sphere with the thickness equal to the
cptimum thickness of the cylinder, thus giving results for the case of
equal thickness in the cylinder and the end. It was established that
the strains in the hemispherical end were less than those in the cylinder
by about 30 percent. The results of three calculations are shown in
table III. Thus, a hemispherical end on a cylindrical pressure vessel
of the same thickness as the cylinder would be subjected to 30-percent
less strain than the cylinder. There are additional strains at the
Joint between the cylinder and hemisphere due to discontinuities, but
calculation of these is beyond the scope of this report.

CONCLUSIONS

For the analysis conducted herein on an Inconel X reactor pressure
vessel with internally cooled walls, the following conclusions can be
drawn:

1l. For given values of pressure load and heat flux, there is a min-
imum possible strain that occurs at a particular wall thickness.

2. For a given value of pressure load, the minimum equivalent total
strain for the range of heating fluxes investigated will occur at essen-
tially the same wall thickness.
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3. The average tangential stress for optimum wall thickness is

essentially constant for a given material, varying only about &5 percent

throughout the range of heat flux and pressure load investigated; but
the strain varies considerably.

4. Variation of conductivity and coefficient of expansion does not
change the trend of the results; but the strains may be affected, par-
ticularly at high values of heat flux and thickness.

5. A pressure excursion of 110 percent would be tolerable over the
range of heat flux and pressure load investigated.

6. The equivalent total strain increases at a lcwer rate than the
heat flux over the range of heat flux investigated.

7. In the case of a reactor core of length-diameter ratio equal %o
unity, a spherical containment vessel would be subjected to from 70 to
80 percent of the strain of a cylindrical containment vessel.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, December 21, 1959

T9S-4
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APFENDIX A

DETERMINATION OF STRESS AND STRAIN DISTRIBUTION IN CYLINDER

Equations (1) and (5) were solved by the method used in reference 3
with appropriate changes to apply to & cylinder instead of a disk.

In the finite-difference method, a number of discrete point stations
are chosen along the radius of the cylinder. It is assumed that at each
of these points the plastic strains, the temperature, and the quantities
E, a, and p are known, and also that the values of these quantities
can be approximated midway between these point stations. An explanation
of the determination of the preceding quantities is given in the body
of the report. Using middle differences, let

dg _ %n ~ %n-1 and _ % * %1
dr © rp - T o= 2

Substituting this (and similar relations for other quantities) into
equations (1) and (5),

nor,n - nce,n = Fndr,n-l + Gnce,n-l (Al)
Chor,n + Daog n = Frop n.1 + Gpog n-1 + H) + P} (a2)
where
2
O = 24— C.=_(_&)__(_ar_bui
o hy 2ry n hE )n hE )n, 2Epry
2

D. = 1 D! = 1y + l+y
o= o2r, n - (h.‘E:)n Zh.E)l,1 ZE}nrn
Fo=Xo_1 F! o= - i o8 o =tH
o h ZI'n-]. n (hE)n-l (hE)n 1 2En-lrn 1

1 1 pz 1 +p
G, = G! = -
noZrp.y - (hE)y.y (hB)py 2By gTng

1 +
o = ___H;Ji [(_Q’T)n - (G,T)n_l]

1 1 i 1 'y 1 1 M
v (= . = —_— . —_— _
Fn = ( h, 2ry ¥ hn>'€e’p’n " (Zrn ¥ hn)er,p,n * (hn Toarpg hn>€9’P«'n'l

(LB
+(Zrn—l h‘n)er’P"n-l
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Considering the linear nature of equations (Al) and (A2) and the
possibility of successive application of these equations in going from
station to station, it follows that the stresses at any station can
ultimately be expressed in linear terms of the stresses at any other
station. For convenience, the stresses at all stations are expressed

in terms of the tangential stress at the inner radius °e,a3 thus,
or,n = Ar,n%,a * Br,n (13)
Og,n = Ag,n%,a * Bg,n (A4)
Or,n-1 = Ar,n—lde,a + Br,n-l (A5)
Og,n-1 = Ae,n—lce,a + Be,n-l (a6)

Subst%tuting these values of 9r,n’ 9,ns Or,n-1s and 99,n-1 into
equations (Al) and (A2),
(CnAr,n - DnAe,n - FnAr,n—l - GnAe,n—l)Ue,a

+ (CnBr,n = PnBg,n = FnPr n-1 - GnBe,n—l) =0
(A7)

(CﬁAr,n - DﬁAe,n - FﬁAr,n—l - GﬁAe,n-l)oe,a

0
(48)

+ (CﬁBr,n - DBy, - FpBr,n-1 - GﬁBe,n—l - Hy - Pp)

Ih equations (A7) and (A8), the stress g, , 1s completely arbi-
trary, since it depends only upon the boundary ¢onditions and not on
the equations of elasticity. Thus, the equations are valid for any value
of 9g,a" For this to be true, the terms in the parentheses must equal

zero. Therefore,

I
o

Cofr,n - Dnhgn = Fphr n-1 - Gpig,n-1 =
CoBr,n -~ PnBg,n - FnBr,n-l - GnBe,n—l =0
(a9)

CﬂAr,n - DﬁAe,n - FﬁAr,n-l - GﬁAe,n—l =0

CﬁBr,n - DﬂBe,n - FﬁBr,n-l - GﬁBe,n—l +Hy + Py =0

L\

T9S-4
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Solving these four equations simultaneously for Ar,n) Ag,ns Br,n: and
Be n»
2
* 9
Apn =Khp n.1 +Ihg pny
Ae,n = K'Ar,n-l + L{Ae,n-l
’ (A10)
4 Br,n =KBp,n-1 +1Bg n.y + M
(9]
1
5] Be,n = K'Br,n-l + L'Be,n-l + M )
where
DnFn + DnFn ' CnFn - CiFn
K = CpDp + CpDp n " Cb), + C\Dy
. _ DiGy + Dyl . CaG - CiGy
‘é "~ CuDy + CiDp In = CuDp + CiDp
Y]
_ Doy + B5) . _ CnlH} + 3)
. 1 CpDy + CiDy ChDh + CiDp
At r = a (station 1, inside surface), Op,a = ~P (boundary con-
dition) and Og,n = Ug g+ Substituting in equations (A3) and (A4),
-p = Ar’aoe’a + Br’a
Ue’a = Ae’ace,a + Be’a
These equations are true regardless of the value of 9,8’ Therefore,
Be’a =0 T
A =1
a,a
’ > (a11)
Ap g =0
Br,a = -P
)
< The radial stress at the outside surface =~ O (boundary condition). There-

fore,

or,b = 0 = Ap 105,8 *+ Brp
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or

0g,a = - T (A12)

From the known coefficients at the first station (eq. (All)), the
coefficients at all other stations can be determined progressively by
successive applications of equation (Al0). When all of the coefficients
have been determined, the unknown Og,a CBL be determined from equation

(A12). Then the radial and tangential stresses can be determined using
equations (A3) and (A4).

196-4
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APPENDIX B

CALCULATION OF PLASTIC STRAINS

This appendix is taken from reference 4, appendix I.

19

The deformation theory of plasticity is used with the three usual
assumptions that the direétions of the principal strains coincide with
the directlons of the principal stresses, that the ratios of the prin-

cipal shear strains are equal to the ratios of the principal shear

stresses, and that the volume remains constant in the plastic range.

These assumptlons imply

€r,p + ee’P + ez,p =0

By substituting the stress-strain relations,

l

€ = oy - u(oy + o 51 + € + of
T ELr 8 ZJ r,p

€g =3 [09 LG dz)] tegpt T B

1
R S s R
J
into the first of equations (Bl), it can also be shown that

€r,p - €o,p - Sr,p - Sz,p _ fo,p - Gz,p = K,

where

(B1)

(82)

(B3)

(B4)
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Define
\
1
O = -_—\/: J(or - 0g)% + (o - 0,)% + (0g - ;)%
_ e 2 2 2
€ep = % VQET,P - ee’p) + (er,p - ez,p) + (ee,p - ez,p) ?(BS)
2
€et = Jé— ‘/(er - ee)2 + (ep - €)% + (eg - €,)? )

Then by squaring and adding the equations in (Bl) and (B3), it follows
that

3 Cet
o
(B6)
€
Ky = 222
%
Hence, by the relation between K; and Ko in equation (B4),
2 %
€et =3 F (1 +1) + €ep (B7)

The plastic strains can be determined in terms of the total strains
by dividing equation (B3) by equations (Bl) and applying equations (B6):

€r,p _ €9,p = €r,p _ ezip = GQJP _ eZLE: §§-= EEE- (B8)
€r = €y €. - €4 €y = &y Kl €at

Solving equation (B8) together with the incompressibility relation in
equation (Bl) results in equations (8) in the text.

Figure 1 shows a typical stress-strain curve for Inconel X and
illustrates the meaning of some of the preceding terms.

1 4

9S4
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APPENDIX C

ANALYSIS OF SPHERE

The assumptions in the body of the report for the analysis of the
cylinder and the introductory paragraph of appendix A apply to the
analysis of the sphere except where by nature of geometry they apply
only to the cylinder. The equilibrium equation for a hollow sphere is

do, 2(o, - 0,)
r r 4] _
o+ = =0 (c1)

Because of symmetry, the stress-strain displacement equations reduce to

du 1
€1' = ——] = E—' (O'r - 2}10’9) + o + er,P (Cz)
u J.[ ]
Ge = ; = E 0-9(1 - H) - p.o'r + ol + €6)P (C3)

Eliminating u between (C2) and (C3) and introducing the incompressibil-
ity condition (er,p + € pt €z,p= 0) give the compatibility equation:

d (09) a Cice) a Cidr) a d (op = 0g) (1 + 1) 3¢9, 1
a\E) “a@\E/ " avE/ a0 ta (Gg,0) - Br " T
(c4)

Putting equations (Cl) and (C4) in finite-difference form,

Cnor,n - PuOg,n = Fnor n-1 + Gnlg,n-1 (cs)
Chop,n *+ Pnog,n = Fpop no1 + Gpog n-1 + By (ce)
where
1 1 1+ v
C, = m— + — ¢! = - -
" h, Ty n &E,r,  Eph,
1 1 -~-u 14+
D, = — D} = +
ooy Epbn ZEnTn
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Gpn = = G':l—u— 1+ oy :
Tn-1 o hEn-l 2En—lrn—l
R - - (car)y - (arT), _Se,p,n ~ %9,pyn-1 3 (eezp> N (eezp>
hpy hy 2I\Tt ' /n-

As in appendix A, the stresses at all stations are expressed in
terms of the tangential stress at the inner radius:

o
or,n = Ar n9,a + Br n %
%,n = £g,n%,a * Bg,n
Substituting into equations (C5) and (C6) gives
(CnAr,n - DnAe,n - FnAr,n—l - GnAe,n—l)Ue,a
* (CnBr,n = DPnBg,n - FuBr,n-1 - GnBe,n—l) =0 (c7)
(CﬁAr,n - DﬁAe,n - FﬁAr,n-l - GﬁAe,n—l)Ue,a ]
+ (ChBr,n + DnBg,n - FiBg n_1 = GnBg no1 - H) =0 (c8) -

For equations (C7) and (C8) to be valid for any value of g¢. _, the
. 9,3.
following must be true:

CnAr,n - DnAe,n - FnAr,n--l = Gphg,n-1 =0 A
CoBr,n = DnBg,n = FnBr,n-1 - GnBg,n-1 =0
1 1 1 1 (09)
CnAr,n + Dpfgon = Fphr n-1 - Gohg,n-1 =0
CﬁBr,n + DﬁBe,n - FrllBr,n-l - GﬁBe,n-l -Hp =0 .

Solving these four equations simultaneously for Ar,n: Ae,n: Br,n: and
Be,n gives:
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j
Apon = KnAr,n—l + LnAe,n-l
Ag,n = KﬂAr,n-l + LﬁAe,n-l
(c10)
Br,n = KnBr,n-1 + InBg,n-1 + Mp
Be,n = KﬂBr,n-l + LﬁBe,n—l + My
. ./
where
c - DpF, + D Fy K - ChFn ~ CAF,
7 C.D) + CpDy CpDp + CpDpy
_ GaDp + GpDp . ChGpn = CpGy
In=gpr+cp, m~ED+om,
I t 1 - A\l 1
CnDn + CnDn CnDn + CnDn
Applying the boundary conditions as in appendix A gives
Br,p
o = - 2= (c11)
9,8 Ar v

(which is identical with eq. (Al2)). The procedure for finding the
plastic stralns and the iteration procedure are the same as in the case
of the cylinder. It should be noted that the equation for the equivalent

total strain reduces to eqt = % Ier - €9,’ and equation (C2) can be put

in terms of €9,D by using the condition of incompressibility,

=1 - -
& =2 (op - 2ugg) + ol - 2e4 4

so that only 9,7 need be computed. The equation for now

€
becomes 0,p
_LlZep (. _
€0,p = % s (eg - er)



24
APPENDIX D

CALCULATION OF TEMPERATURE DISTRIBUTION FOR SPHERE
The quantity of heat flow at the surface r is
4 o2 Q (3 3
= K r -1
Q 3 B v (ro | )

From this is obtained, with manipulation similar to that in the
case of the cylinder,

. 2
T= - ?Q-i (To + EQ) - EfEﬁil
Aj Aj Aj

where
B I‘2 31‘2 I'g
fs(r) =B 8 . 2420
3r viz 2 T
and
B B:\2 2f
To = - __J_ + V(Ti + _i) S(rl)
A A
J J J
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Cp-4

TABLE I.

AND SPHERICAL PRESSURE VESSELS

- COMPARISON OF STRAINS IN CYLINDRICAL

Cylinder Sphere Heat Cylinder Sphere €t . s
. - AP
pressure pressure | flux, | equivalent | equivalent | ’
load, pr, | load, Q/v, total total et,c
lb/in. 1/? pr, w/cc strain, strain, *
lb/in. eet,c’ eet,sl
% %
18,000 25,400 600 1.10 0.87 79
30,000 42,500 350 1.60 1.18 74
36,000 51,000 250 1.72 1l.24 72

25
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TABLE II.

(a) Conductivity

- INFLUENCE OF CONDUCTIVITY AND COEFFICIENT OF EXPAN-

SION ON EQUIVALENT TOTAL STRAIN AND TANGENTIAL STRESS

Heat Conduc- Cylinder Sphere
flux, [ tivity,
Q/V, k Equivalent| Tangential | Equivalent| Tangential
w/ce total stress, total stress,
strain, 9, ¢ strain, 9,59
€et, e psi eet,s’ psi
e
Pressure load, pr, 18,000 1b/in.
50 | Lower 0.29 108,000 0.27 93,000
Inconel .29 108,000 a7 93,000
Upper .28 107,000 .26 93,000
950 | Lower 1.86 123,000 0.80 102,000
Inconel 1.61 122,000 .73 101,000
Upper 1.45 121,000 .65 100,000
Pressure load, pr, 42,000 lb/in.
50 | Lower 0.74 114,000 0.50 97,000
Inconel .71 114,000 .49 97,000
Upper .64 112,000 .46 96,000
250 | Lower 3.10 138,000 1.02 106,000
Inconel 2.67 134,000 .94 104,000
Upper 2.15 130,000 .84 103,000
(b) Coefficient of expansion
Heat Coeffi- Cylinder Sphere
flux, | cient of
Q/V, thermal | Equivalent | Tangential | Equivalent | Tangential
w/cc expan- total stress, total stress,
sion, strain, Ge,c) strain, Oe,s!
@ €ot,cr psi €et,s psi
# i
Pressure load, pr, 18,000 1b/in.
50 | Lower 0.27 107,000 0.26 93,000
Inconel .29 107,000 .27 93,000
Upper .30 108,000 .27 93,000
950 | Lower l.z22 118,000 0.60 929,000
Inconel 1.62 123,000 .13 101,000
Upper 1.77 123,000 .82 102,000
Pressure load, pr, 42,000 1b/in.
50 | Lower a.61 112,000 0.46 96,000
Inconel .70 114,000 .48 97,000
Upper .75 114,000 .50 927,000
250 | Lower 2.11 132,000 0.79 102,000
Inconel 2.67 134,000 .94 104,000
Upper 2.70 134,000 1.03 106,000

TI7G-H
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CP-4 back

TABLE IIT.

- COMPARISON OF STRAINS IN CYLINDER

AND IN SPHERE WITH THICKNESS EQUAL

TO CYLINDER OPTIMUM

Pressure Heat Thick- | Equivalent total
load, pr,| flux, | ness, strain, €qt, %
1b/in. Q/v, t,

wfce in. Cylinder | Sphere
18,000 500 0.18 0.95 0.74
30,000 250 .28 1.18 .92
42,000 150 .38 1.45 1.01

27
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Equivalent plastic strein, €ep, in./in.
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Thermal conductivity, k, Btu/(hr)(sq ££)(°F/ft)
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Equivalent tctal strain, €ots %
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Equivalent total strain, €gi, %
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Equivalent total strain, €.4, %
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